Thème 1 : Constitution et transformation de la matière

Partie 3A. Evolution spontanée d'un système chimique

CHAP 7B-COURS Prévoir le sens d'évolution spontanée

1. TRANSFORMATIONS TOTALES ET LIMITEES

1.1. Définition

Soit une réaction a.A + b.B \Rightarrow cC + d.D

- Quand on mélange 2 réactifs A et B avec A en défaut :
- En 2de on considère que la réaction est totale, càd que le réactif en défaut est entièrement consommé et qu'à la fin il ne reste que B et les produits C et D
- En fait il existe des réactions non totales, dans un tel cas le réactif en défaut n'a pas entièrement disparu, càd qu'à la fin il reste A, B, C et D
- Si la réaction est limitée (non totale), dans l'équation de la réaction on met un signe ≒ et pas une flèche → (cf ci-dessus)

1.2. Détermination du caractère total ou non d'une transformation

- On suppose que la réaction est totale et on calcule x_{max}
- On détermine expérimentalement x_f (souvent à l'aide des produits formés)
- On compare x_{max} et x_f :
 - Si $x_{max} = x_f$ la réaction est totale
 - Si x_f < x_{max} la réaction est totale

Rq:

x_{max} se calcul à l'aide des <mark>réactifs</mark>, càd du côté gauche x_f se calcul à l'aide des <mark>produits</mark>, càd du côté droit

1.3. Taux d'avancement final d'une réaction

- Il est noté (TAU) il n'a pas d'unité, il vaut

$$\tau = \frac{x_f}{x_{max}}$$

Si $\tau \le 1$ la réaction est limitée

Si $\tau = 1$ la réaction est totale

Rq: si on x par 100 on obtient le taux d'avancement en pourcentage :

$$\tau (\%) = \frac{x_f}{x_{max}} \times 100$$

Si τ < 100 % la réaction est limitée

Si τ = 100 % la réaction est totale

2. QUOTIENT DE REACTION

2.1. Définition

- Soit une réaction aA + bB = cC + dD
- Le quotient de réaction noté Qr est égal à :

$$\mathbf{Qr} = \frac{[\mathbf{C}]^{\mathbf{c}}.[\mathbf{D}]^{\mathbf{d}}}{[\mathbf{A}]^{\mathbf{a}}.[\mathbf{B}]^{\mathbf{b}}}$$

Rq: Qr s'écrit ds n'importe quel état du système : E.I. ; E.F ; E en cours

2.2. Convention

- En toute rigueur, $\mathbf{Qr} = \frac{(C)^{c} \cdot (D)^{d}}{(A)^{a} \cdot (B)^{b}}$ où les valeurs entre parenthèses représente les activités chimiques :
 - Pour une espèce X en solution: $(X_{(aq)}) = [X]/C^0$ avec $C^0 = 1$ mol.L⁻¹
 - Si l'eau est en excès (solvant) : (H₂O_(I)) = 1
 - Si une espèce est solide : (X_(s)) = 1
- En conclusion et pour simplifier, on ne met dans la formule du Qr que les espèces aq. et liq. mais pas les solides ni l'eau si c'est le solvant.

$$\underline{\text{Ex:}} \quad \text{CH}_{3}\text{COOH}_{(aq)} + \text{H}_{2}\text{O}_{(liq)} = \text{CH}_{3}\text{COO}_{(aq)}^{-} + \text{H}_{3}\text{O}_{(aq)}^{+}; \qquad \text{Qr} = \frac{[\text{CH}_{3}\text{COO}_{(aq)}^{-}].[\text{H}_{3}\text{O}_{(aq)}^{+}]}{[\text{CH}_{3}\text{COOH}_{(aq)}]}$$

- les activités chimiques sont des nombres sans dimension donc Qr est sans unité.

3. CONSTANTE D'EQUILIBRE

- Quand le système est à l'équilibre (réaction fini), le quotient de la réaction est une constante appelée constante d'équilibre, notée K ou Qr(eq) ou Qr_f
- Son expression devient :

$$K = \frac{[C]_f^{c}.[D]_f^{d}}{[A]_f^{a}.[B]_f^{b}}$$

- K ne dépend pas de la composition initiale d'un système
- K ne dépend que de la température

4. INFLUENCE DE K SUR LE TAUX D'AVANCEMENT D'UNE REACTION

- Plus K est grand, plus le taux d'avancement d'une réaction est grand (càd plus τ est grand), c'est-à-dire plus il y a de réactifs qui se transforment en produit (plus la réaction est déplacée dans le sens direct).

Rq: Si K > 1.10^4 on dit que la réaction est quasi-totale (τ > 99 %)

5. EVOLUTION SPONTANEE D'UN SYSTEME CHIMIQUE

5.1. Définition

- L'évolution est spontanée si le système évolue à partir de l'état initial sans aucune intervention extérieure
 - 5.2. Cas où il n'y a pas d'évolution spontanée

Il n'y a pas d'évolution si :

- a) Le système est déjà à l'équilibre
- **b)** Lorsque la transformation est impossible
- c) Si l'évolution est tellement lente qu'on ne la voie pas se faire

5.3. Critère d'évolution spontanée

Soit une réaction : a.A + b.B = c.C + d.D

• On calcule le quotient de réaction à l'état initial : Q_{r,i}

Qr,i =
$$\frac{[C]_{i}^{c}[D]_{i}^{d}}{[A]_{i}^{a}[B]_{i}^{b}}$$

• On calcule le quotient de réaction à l'équilibre : K

$$K = Q_{r,eq} = Q_{r,f} = \frac{[D]_{f}^{d}.[C]_{f}^{c}}{[A]_{f}^{a}[B]_{f}^{b}}$$

• On compare Qr,i à K

a) Si $Q_{r,i} = K$

Le système est déjà à l'équilibre (la réaction est terminée)

b) Si $Q_{r,i} < K$

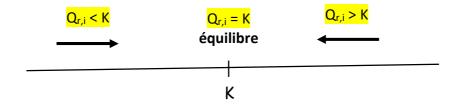
Le système va évoluer de l'état initial vers l'état final dans le <mark>SENS DIRECT</mark> càd dans le sens de disparition de A et B et de formation de C et D

c) Si $Q_{r,i} > K$

Le système va évoluer de l'état initial vers l'état final dans le <mark>SENS INDIRECT</mark> càd dans le sens de disparition de <mark>C et D et de formation de A et B</mark>

Si tel est le cas on réécrit l'équation dans l'autre sens pour se simplifier la vie càd

$$c.C + d.D = a.A + b.B$$


qui évoluera alors dans le sens direct

- Le quotient de réaction initial associé à cette réaction sera donc de : $Q'_{r,i} = \frac{1}{Q_{r,i}}$
- La constante d'équilibre associé à cette réaction sera donc de : $K' = \frac{1}{K}$

Rq: si
$$Q_{r,i} > K$$
; $\frac{1}{Q_{r,i}} < \frac{1}{K}$ donc: $Q'_{r,i} < K'$

Le système c.C + d.D ≒ a.A + b.B évolue donc bien dans le sens direct càd de disparition de C et D et apparition de A et B

RESUME :

