### Thème 3 : Energie : conversions et transferts

Partie 2. Effectuer des bilans d'énergie sur un système

CHAP 17-EXOS Initiation à la thermodynamique Loi de phénoménologique de Newton Effet de serre

Exercices en autonomie: QCM p.441/ER p442 à 445/EC n°24\*-27\*-29\*-31\*-33\*-36\*-38\*-40\*-42\*

Exercices p.446 et suiv : n°25-28-30-32-35-37-39-41-43-44-49-50-type BAC n°57

Données • 1 bar = 105 Pa

- Constante des gaz parfaits : R = 8,31 J⋅K<sup>-1</sup>⋅mol<sup>-1</sup>
- Conversion : T (K) =  $273,15 + \theta$  (°C)
- 25 Dans le pneu d'une voiture qui a longuement roulé, la température de l'air atteint  $\theta_1 = 65$  °C.

Le volume de l'air qu'il contient vaut V = 50 L.

L'automobiliste mesure la pression  $P_1 = 2.3$  bar.

- a. Calculer la quantité de matière *n* d'air, assimilé à un gaz parfait, contenu dans le pneu.
- **b.** Quelle sera la pression  $P_2$  à froid, lorsque la température de l'air vaudra  $\theta_2 = 15$  °C ?
- Une brique indéformable et immobile, de capacité thermique  $C = 900 \text{ J} \cdot \text{K}^{-1}$  a une température qui diminue de 420 °C après sa cuisson.
- Quelle énergie thermique cède-t-elle à l'extérieur ?
- 30 Un système formé de m=100 g d'eau reçoit, par mouvement de brassage, un travail W=250 J. Pourtant, sa température baisse de 5 °C.
- Calculer l'énergie thermique Q qu'il cède à l'extérieur.
- Deux corps solides identiques, de même capacité thermique C, de températures initiales  $\theta_{1i}=30$  °C et  $\theta_{2i}=70$  °C, ne peuvent échanger de l'énergie thermique qu'à travers la cloison qui les sépare, de résistance thermique  $R_{\rm th}=0.025~{\rm K\cdot W^{-1}}$ .
- a. Calculer la valeur du flux thermique  $\Phi_{th}$  traversant la cloison à l'instant initial.
- b. Comment les températures des deux corps évoluentelles au cours du temps ?
- Une météorite de masse m=100 g, de capacité thermique massique c=790 J·K $^{-1}$ ·kg $^{-1}$ , d'aire S=20 cm $^2$ , de température initiale  $T_0=750$  K, tombe dans la mer formant un thermostat à la température  $T_{\rm th}=293$  K. Le coefficient de transfert conducto-convectif vaut h=100 W·m $^{-2}$ ·K $^{-1}$ . La température T(t) de la météorite vérifie l'équation différentielle :  $\frac{dT}{dt} + \frac{hS}{mc}T = \frac{hS}{mc}T_{\rm th}$
- $\blacksquare$  Calculer le temps caractéristique  $\tau$  de refroidissement de la météorite.

- Constante de Stefan-Boltzmann :  $\sigma = 5,67 \times 10^{-8} \, \text{W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$
- $^{\circ}$  Capacité thermique massique de l'eau :  $c_{\text{eau}} = 4,18 \text{ kJ} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$
- Constante d'Avogadro :  $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$

# Compression isotherme d'un gaz parfait

#### Utiliser un modèle

Un système formé de *n* mol de gaz parfait est maintenu à température constante *T*. Sa pression est multipliée par deux.

- a. Par quel coefficient son volume est-il multiplié?
- b. Par quel coefficient sa masse volumique est-elle multipliée ?

# **37** Frigorifié en 10 secondes ?

### Faire preuve d'esprit critique • Estimer un ordre de grandeur

Le corps humain a une capacité thermique massique proche de celle de l'eau. L'aire de sa surface vaut environ 2  $m^2$ . On assimile la température de son corps à celle de sa peau. Le coefficient conducto-convectif au contact de l'eau immobile vaut environ  $h=100~\text{W}\cdot\text{K}^{-1}\cdot\text{m}^{-2}$ . L'hypothermie est souvent mortelle quand la température du corps atteint 25 °C. Le temps caractéristique de refroidissement d'un corps de capacité thermique C dans l'eau vaut  $\tau=\frac{\textit{C}}{\textit{hS}}$ .

- a. Estimer l'ordre de grandeur de  $\tau$ .
- **b.** Peut-on peut mourir par hypothermie si on passe 10 secondes dans l'eau d'un lac gelé en surface ?

## **41** Congélateur

#### Schématiser une situation

Dans l'enceinte d'un congélateur, l'air et les aliments sont à la température  $\theta_1=-25~^{\circ}\mathrm{C}$  et la température de l'air extérieur vaut  $\theta_2=25~^{\circ}\mathrm{C}$ . Pour assurer le maintien de cette situation, pendant une heure de fonctionnement, le congélateur opère le transfert d'une énergie thermique  $Q_{\mathrm{cong}}=1,43~\mathrm{MJ}$  entre les aliments et l'extérieur.

 a. La température des aliments doit rester constante au cours du temps.

Par un bilan thermique sur ce système, en déduire l'énergie thermique Q transférée par conduction thermique à travers les parois de l'enceinte.

**b.** En déduire le flux thermique conductif  $\Phi_{th}$  à travers les parois dont les faces sont aux températures  $\theta_1$  et  $\theta_2$ , puis la valeur  $R_{th}$  de la résistance thermique des parois de l'enceinte.

#### 43 Eau tiède

#### Effectuer un calcul

En 10 secondes environ, le mitigeur d'un évier mélange une masse  $m_1$  = 100 g d'eau froide à la température  $\theta_1$  = 10 °C et une masse  $m_2$  = 180 g d'eau chaude à la température  $\theta_2$  = 60 °C.

Calculer la masse totale d'eau et la température de cette eau. On négligera tout transfert thermique et tout travail échangé avec l'extérieur.

## M Démontrer et appliquer le cours

Établir une loi • Exploiter un énoncé

Pour refroidir un verre de limonade, on peut y introduire un glaçon, mais l'eau de fonte du glaçon affadit la boisson. Boire une limonade « on the rocks » signifie qu'on y introduit plutôt un caillou (rock) glacial. Ce caillou est un cube de granite de côté a=3,0 cm. La masse volumique du granite vaut  $\rho = 2,64 \times 10^3 \text{ kg} \cdot \text{m}^{-3} \text{ et sa}$ 



capacité thermique massique,  $c_{qr} = 790 \text{ J} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$ .

Pour le refroidir, on le suspend par un fil dans une chambre froide, au contact de l'air à la température  $\theta_{th} = -25$  °C. La température du caillou à la date t est notée  $\theta(t)$ , sa valeur initiale est  $\theta(0) = \theta_0 = 15$  °C. La puissance du transfert thermique conducto-convectif cédé par le caillou à l'air extérieur est donné par la loi de Newton :

$$P_{th,cc} = hS(\theta(t) - \theta_{th})$$

 $P_{\rm th,cc}=hS(\theta(t)-\theta_{\rm th})$  où S est l'aire de la surface du glaçon et  $h=10~\rm W\cdot K^{-1}\cdot m^{-2}.$ 

- a. Calculer l'aire totale des six faces du caillou.
- b. Calculer le volume du caillou.
- c. En déduire sa masse et sa capacité thermique  $C = mc_{or}$ .
- d. Effectuer le bilan d'énergie interne entre les dates t et
- $t + \Delta t$  pour le caillou, solide incompressible.
- e. En déduire l'équation différentielle vérifiée par  $\theta(t)$  qu'on exprimera sous la forme suivante en précisant la valeur du temps caractéristique τ:

$$\frac{d\theta}{dt} + \frac{1}{\tau}\theta = \frac{1}{\tau}\theta_{th}$$

f. La solution générale de cette équation différentielle  $\theta(t) = \theta_{th} + Ae^{-t/\tau}$ est:

Déterminer la constante A grâce à la condition initiale.

g. Déterminer la date à laquelle le caillou devient « glacial ». c'est-à-dire que sa température exprimée en degrés Celsius devient négative.

# Pourquoi a-t-on si faim en sortant de la piscine?

Exploiter un énoncé

Une nageuse parcourt 1 500 m en une heure dans l'eau d'une piscine à la température  $\theta_{th}=28~^{\circ}\text{C}$ . La température de sa peau est égale à  $\theta_{n}=33~^{\circ}\text{C}$ .



La puissance thermique transférée de son corps vers l'eau est donnée par la loi de Newton :

$$P_{\text{th.cc}} = hS(\theta_{\text{p}} - \theta_{\text{th}})$$

où le coefficient conducto-convectif vaut  $h = 10 \text{ kW} \cdot \text{K}^{-1} \cdot \text{m}^{-2}$  et l'aire de la surface de la peau de la nageuse  $S = 1.9 \text{ m}^2$ .

- a. Calculer l'énergie thermique Q cédée par la nageuse à l'eau pendant sa séance de natation.
- b. Les dépenses énergétiques du corps humain sont globalement compensées par l'alimentation. L'unité énergétique des diététiciens est la kilocalorie, égale à 4,18 MJ.

Exprimer Q dans cette unité.

c. La dépense énergétique associée aux mouvements de brasse sur une distance de 1 500 m est estimée à 600 kilocalories.

Une banane apporte 89 kilocalories.

Combien de bananes la nageuse peut-elle manger pour reconstituer ses réserves ?

Indiquer la part imputable aux mouvements de brasse et celle imputable aux transferts thermiques

d. Reprendre le calcul précédent si la nageuse s'entraîne dans un lac dont l'eau est à 18 °C.

## 50 Principe du thermoplongeur

Effectuer un calcul

Un récipient possède une capacité thermique  $C = 100 \text{ J} \cdot \text{K}^{-1}$ . On y verse une masse m = 1,00 kg d'eau. Un dipôle ohmigue de résistance  $R = 1,20 \Omega$  et de capacité thermigue  $C' = 20 \text{ J} \cdot \text{K}^{-1}$  est plongé dans l'eau. On place l'ensemble dans une enceinte qui empêche tout transfert thermique avec l'extérieur, et on mesure sa température initiale  $\theta_0 = 14,5 \, ^{\circ}\text{C}.$ 

À l'instant initial, on alimente le dipôle ohmique par un générateur de tension  $U_0 = 48,0 \text{ V}.$ 

- a. Calculer la capacité thermique  $C + mc_{eau} + C'$  du système formé par le récipient, l'eau et le dipôle.
- b. Donner l'expression littérale de l'énergie thermique Q reçue par ce système pendant une durée  $\Delta t$  en admettant qu'elle est égale à l'énergie thermique fournie par effet Joule.
- c. Déterminer la valeur de  $\Delta t$  nécessaire à l'entrée en ébullition de l'eau (à 100 °C).

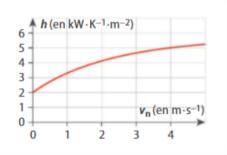
## 57 Résolution de problème

Survie en milieu marin SVT

Les mammifères marins maintiennent la température de leur corps constante en produisant de l'énergie thermique par métabolisme\*. Pour expliquer cette situation, on adopte un modèle très simple :

- L'animal est assimilé à une boule sphérique de rayon R.
- Son métabolisme produit une énergie thermique dont la puissance est proportionnelle à son volume  $V: P_{\rm mb} = \beta V$  où  $\beta = 700~{\rm kW \cdot m^{-3}}$  est la puissance volumique, qui est indépendante de la taille de l'animal.
- Sa température corporelle  $\theta = 37$  °C est égale à celle de sa peau.
- Il est plongé dans l'eau à la température loin de sa peau égale à θ<sub>th</sub> = 10 °C.




Le plus petit mammifère marin connu, le marsouin du Pacifique, a une masse à l'âge adulte de l'ordre de 40 kg.

## Doc. 1 Loi de Newton

Un système solide d'aire totale S à la température  $\theta$ , plongé dans un fluide à la température loin du solide  $\theta_{th}$  lui cède une énergie thermique par transfert conducto-convectif, puissance  $P_{th,cc} = hS(\theta - \theta_{th})$ .

#### Doc. 2 Évolution du coefficient de convection avec la vitesse de l'animal

coefficient conductoconvectif h d'un mammifère marin dépend de sa vitesse de nage v<sub>n</sub>. L'activité de nage est évidemment consommatrice en énergie. On donne ci-contre l'allure du graphique traduisant cette dépendance.



#### Doc. 3 Propriétés géométriques de la boule sphérique

Soit une boule de rayon R.

- L'aire de sa surface sphérique vaut  $S = 4\pi R^2$ . Son volume vaut  $V = \frac{4}{3}\pi R^3$ .

#### Vocabulaire

Métabolisme : ensemble des réactions biochimiques permettant la survie d'un organisme.

#### **PROBLÈME**

Quel est le rayon minimal qui permet à un mammifère marin de survivre dans les conditions décrites dans le modèle?