Thème 1 : Constitution et transformation de la matière

Partie 3B. Force des acides et des bases

CHAP 08-ACT EXP Détermination d'un pKA

Objectifs:

• Estimer la valeur de la constante d'acidité d'un couple acide-base à l'aide d'une mesure de pH

1. PRINCIPE

- Le pKa d'un couple acide-base est une grandeur importante, qui peut être déterminée à partir de mélanges des deux espèces conjuguées.
- Pour un couple acide-base AH/A⁻, le pH est lié au pKa du couple par la relation

$$\mathbf{pH} = \mathbf{pK_A} + \log \frac{[\mathbf{A}^-]_f}{[\mathbf{AH}]_f}$$

- -Ainsi, le pKa d'un couple peut être déterminé graphiquement, en mesurant le pH de différentes solutions obtenues par des mélanges de volumes variables de l'acide et de sa base conjuguée.
- On considère, lors de cette activité, qu'il n'y a pas de réaction entre les espèces conjuguées AH et A⁻ mises en présence.

2. MATERIEL A DISPOSITION

- Solutions aqueuses d'acide éthanoïque et d'ions éthanoate de concentration C = 0,10 mol.L-1
- pH-mètre étalonné
- agitateur magnétique
- 2 burettes graduées de 25 mL

3. PROTOCOLE EXPERIMENTALE

- Dans une burette, verser la solution d'acide éthanoïque et ajuster le zéro (voir Fiche pratique 9).
- Faire de même avec la solution d'ions éthanoate.
- Dans un bécher, introduire à l'aide des burettes graduées un volume de V_{AH} = 25 mL de la solution d'acide éthanoïque, puis un volume V_{A^-} = 5,0 mL de la solution d'ions éthanoate.
- Homogénéiser la solution à l'aide de l'agitateur magnétique, puis mesurer le pH (Fig. 1).
- On souhaite recommencer pour les différentes valeurs indiquées ci-dessous.

V _{AH} (mL)	25,0	25,0	25,0	25,0	20,0	10,0	5,0
V _A -(mL)	5,0	10,0	20,0	25,0	25,0	25,0	25,0
pH mesuré							

1) Doit-on refaire intégralement les mélanges pour chaque nouvelle colonne du tableau, ou bien est-il possible à partir du mélange précédent et de réaliser un ajout judicieux d'une des solutions ?

Rédiger un protocole ou vous justifiez votre choix

Appeler le prof pour vérification

APPELEZ LE PROFESSEUR

2) Effectuer les manipulations, puis compléter le tableau en annexe

5. EXPLOITATION

On mélange un volume V_{A^-} de sa base conjuguée A^- de même concentration.

- 1) a) Exprimer littéralement le nombre de moles d'acide AH n(AH) présent dans un volume VAH
- b) Exprimer littéralement le volume total Vtot du mélange?
- c) Exprimer littéralement la concentration en acide [AH] dans le mélange en fonction de C, V_{AH} et V_{A-} en considérant qu'aucune réaction ne se produit c'est-à-dire qu'on fait une simple dilution.
- **2)** Calculer littéralement la concentration en base conjuguée [A-] dans le mélange, en considérant qu'aucune réaction ne se produit c'est-à-dire qu'on fait une simple dilution.
- 3) Démontrer alors l'égalité : $\frac{[A^-]}{[AH]} = \frac{V_{A^-}}{V_{AH}}$
- 4) Calculer les valeurs des rapports $\frac{V_{A^-}}{V_{AH}}$ et $\log(\frac{V_{A^-}}{V_{AH}})$ pour chaque colonne du tableau
- 5) Tracer sur une feuille de papier millimétrée, la courbe du pH en fonction de $\log(\frac{V_{A^-}}{V_{AH}})$ (ou de $\log(\frac{[A^-]}{[AH]})$).

Appeler le prof pour vérification

Aide à la réalisation de la courbe

- En math les équations de courbe se mettent sous la forme y = f(x), avec y ordonnée et x en abscisse.

Comparer y = f(x) et pH = f(log($\frac{V_{A^-}}{V_{AH}}$)) pour trouver ce qu'il faut mettre en abscisse et en ordonnée

- Trouver l'échelle qui donne la courbe la plus grande possible, sans pour autant dépasser la feuille (rq : Il n'est pas obligatoire de prendre la même échelle en abscisse et en ordonnée)
- Mettre les points AU CRAYON
- Tracer la droite au <u>CRAYON</u> et à la règle
- Mettre un titre au graphique
- Indiquer clairement sur la feuille de papier millimétrée et dans un rectangle les échelles utilisées.

Montrer la courbe au prof avant de la tracer

- 6) Quelle est la nature de la courbe obtenue?
- 7) Son équation est de la forme y = a.x + b
- a) Remplacer y et x par la notation du graphique
- b) Calculer a et b. Détailler votre méthode
- 8) A l'aide de la formule donnée au début de l'activité, indiquer pour quelle valeur de $\log (\frac{[A^-]}{[AH]})$ on a pH = pKa.
- 9) Déterminer graphiquement la valeur du pKa du couple acide éthanoïque/ion éthanoate.
- 10) A quoi correspond la valeur du pKa dans l'équation de la courbe modélisée ?
- 11) Relever la valeur des pK_A obtenues par les différents groupes de votre classe de TP et compléter le tableau en annexe
- 12) Déterminer la moyenne des valeurs de pKa obtenues par les différents groupes de votre classe de TP.
- 13) Évaluer l'incertitude de répétabilité (cf fiche) pour un niveau de confiance de 95 %
- 14) Le pKa est une constante essentielle pour un couple acide- base.
- a) Lorsque le pH est inférieur au pKa du couple, quelle forme (acide ou basique) du couple a la concentration la plus élevée ?
- **b)** Le tableau suivant correspond aux résultats obtenus si l'on remplace les solutions aqueuses d'acide éthanoïque et d'ions éthanoate par des solutions aqueuses d'ions ammonium $NH_4^+_{(aq)}$ et d'ammoniac $NH_{3(aq)}$ de même concentration.

En déduire la valeur du pKa du couple NH₄+(aq)/NH_{3(aq)}

V _{AH} (mL)	25,0	25,0	25,0	25,0	20,0	10,0	5,0
V _A - (mL)	5,0	10,0	20,0	25,0	25,0	25,0	25,0
pH mesuré	8,5	8,8	9,1	9,2	9,3	9,5	9,9