Thème 1 : Constitution et transformation de la matière

Partie 3A. Evolution spontanée d'un système chimique

CHAP 07-ACT EXP Critère d'évolution

CORRIGE

2. REACTION ACIDO-BASIQUE

2.1. Manipulation.

pH_A: supérieur à 9.2

pH_B: inférieur à 10,2.

2.2 Questions.

a) Quelle est l'équation de la réaction acido-basique susceptible de se produire entre les espèces de ces deux couples ?

 $NH_4^+(aq) + CO_3^{2-}(aq) = NH_3(aq) + HCO_3^-(aq)$

- b) Cette écriture préjuge-t-elle du sens dans lequel a lieu la transformation ? Non
- c) Calculer la constante d'équilibre K associée à la réaction où $NH_4^+_{(aq)}$ est écrit à gauche Rem : si on l'écrivait dans l'autre sens, la constante d'équilibre serait K' = 1/K).

K = 13

POUR LE MELANGE A

- a) Calculer le quotient de réaction $Q_{r,i}$ dans l'état initial du système après mélange ($V_{total} = 40 \text{ mL}$). $Q_{r,i} = 1$
- **b)** Sachant que, quel que soit l'état initial d'un système, Q_r tend vers K, prévoir le sens d'évolution (direct ou inverse) du système en utilisant la valeur de $Q_{r,i}$.
- Q_{r, i} < K donc évolution dans le sens direct càd vers la droite
- c) $[NH_4^+(aq)]$ et $[CO_3^2(aq)^-]$ diminuent

[NH_{3(aq)}] et [HCO_{3 (aq)}] augmentent

$$\frac{[NH_{3(aq)}]}{[NH_{4(aq)}^+]}$$
 augmentent

$$\frac{[CO_{3(aq)}^{2^-}]}{[HCO_{3(aq)}^-]} \text{ diminue}$$

d) - Calculez le rapport $\frac{[NH_{3(aq)}]_i}{[NH_{4(aq)}^+]_i}$ pour le mélange considéré (V $_{total}$ = 40 mL)

$$\frac{[NH_{3(aq)}]_i}{[NH_{aq}^+]_i} = 1$$

- Calculez le rapport $\frac{[\mathrm{NH_{3(aq)}}]_{\mathrm{equ}}}{[\mathrm{NH_4}^+_{(aq)}]_{\mathrm{equ}}}$ pour le mélange considéré (V_{total} = 40 mL)

$$\frac{[NH_{3(aq)}]_{equ}}{[NH_{4}^{+}_{(aq)}]_{equ}} = 3,2$$

- Comparer
$$\frac{[NH_{3(aq)}]_i}{[NH_{4(aq)}^+]_i}$$
 et $\frac{[NH_{3(aq)}]_{equ}}{[NH_{4(aq)}^+]_{equ}}$. Le système a-t-il évolué dans le sens prévu ?

$$\frac{[NH_{3(aq)}]_{i}}{[NH_{4(aq)}^{+}]_{i}} < \frac{[NH_{3(aq)}]_{equ}}{[NH_{4\ (aq)}^{+}]_{equ}} \ \ \text{\'evolution dans le sens direct}$$

POUR LE MELANGE B

- a) Calculer le quotient de réaction $Q_{r,i}$ dans l'état initial du système après mélange (V_{total} = 44 mL). $Q_{r, i} = 100$
- b) Sachant que, quel que soit l'état initial d'un système, Q_r tend vers K, prévoir le sens d'évolution (direct ou inverse) du système en utilisant la valeur de Qr, i.
- Q_{r, i} > K donc évolution dans le sens inverse càd vers la gauche
- c) [NH₄⁺(aq)] et [CO₃² (aq)⁻] augmentent

[NH_{3(aq)}] et [HCO_{3⁻(aq)}] diminuent

$$\frac{[NH_{3(aq)}]}{[NH_{4(aq)}^+]}$$
 diminue

$$\frac{[CO_{3(aq)}^{2^{-}}]}{[HCO_{3(aq)}^{-}]} \text{ augmentent}$$

d)
$$\frac{[NH_{3(aq)}]_i}{[NH_{4(aq)}^+]_i} = 10$$

$$\frac{[NH_{3(aq)}]_{equ}}{[NH_{4(aq)}^{+}]_{equ}} = 3,2$$

$$\frac{[NH_{3(aq)}]_{i}}{[NH_{4(aq)}^{+}]_{i}} > \frac{[NH_{3(aq)}]_{equ}}{[NH_{4\ (aq)}^{+}]_{equ}} \ \ \text{\'evolution dans le sens indirect}$$

4. APPLICATION DU CRITERE D'EVOLUTION AUX REACTIONS D'OXYDOREDUCTION : Système chimique constitué des 2 couples redox Fe²⁺(aq) /Fe(s) et Cu²⁺(aq) / Cu(s).

4.1. Expérience 1.

a) Qu'observe-t-on?

Le fer se couvre de cuivre

- **b)** Quelle est l'équation de la réaction chimique qui se produit ? (Sa constante d'équilibre vaut $K_1 = 10^{26}$) $Cu^{2+}_{(aq)} + Fe_{(s)} = Cu_{(s)} + Fe^{2+}_{(aq)}$
- c) Pouvait-on prévoir cette évolution ?
 Non

4.2. Expérience 2.

a) Qu'observe-t-on?

b) Ecrire l'équation envisageable de la réaction.

$$Cu_{(s)} + Fe^{2+}_{(aq)} = Cu^{2+}_{(aq)} + Fe_{(s)}$$

c) Calculer Q_{r, i}

 $Q_{r,i} = 0$

d) Utiliser le critère d'évolution pour conforter les observations expérimentales.

Q_{r, i} ≈ K donc pas d'évolution

5. APPLICATION DU CRITERE D'EVOLUTION AUX REACTIONS D'OXYDOREDUCTION : SYSTEME CHIMIQUE CONSTITUE DES 2 COUPLES REDOX Fe³⁺(AQ) / Fe²⁺(AQ) ET I₂(AQ) / I⁻(AQ)

1) Quelle réaction chimique est susceptible de se produire entre les espèces de ces couples ?

$$2Fe^{3+}_{(aq)} + 2I^{-}_{(aq)} = 2. Fe^{2+}_{(aq)} + I_{2(aq)}$$

- 5) Au diode
- **6)** Calculer le quotient de réaction $Q_{r,\,i}$ dans l'état initial après mélange.

 $Q_{r, i} = 2,20.10^{-8}$

- 7) a) Quel est le sens d'évolution prévisible par application du critère d'évolution d'un système chimique ? $Q_{r,i} < K$ évolution vers la droite dans le sens de formation de I_2
- **b)** Correspond-il à celui observé expérimentalement ? **oui**