### Thème 1 : Constitution et transformation de la matière

# Partie 1B. Méthodes physiques d'analyse

## CHAP 02-ESSENTIEL Méthodes physiques d'Analyse

### DÉTERMINER UNE CONCENTRATION OU UNE QUANTITÉ DE MATIÈRE

#### Solutions d'acides ou de bases

$$pH = -\log \frac{[H_3O^+]}{c^0}$$

$$[H_3O^+] = c^010^{-pH}$$

pH sans unité

 $[H_3O^+]$  en mol·L<sup>-1</sup>

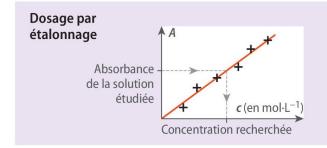
 $c^0 = 1 \text{ mol} \cdot L^{-1}$  concentration standard

 $Validité: [H_3O^+] < 0.1 \text{ mol} \cdot L^{-1} \text{ et } [HO^-] < 0.1 \text{ mol} \cdot L^{-1}$ 

## Solutions contenant un soluté absorbant à une longueur d'onde λ

Loi de Beer-Lambert :  $A_{\lambda} = \varepsilon \ell c$ 

 $A_{\lambda}$ : absorbance sans unité


ℓ : épaisseur de solution traversée en centimètres (cm)

c: concentration du soluté en moles par litre (mol·L<sup>-1</sup>)

ε: coefficient d'absorption molaire de l'espèce colorée

 $(L \cdot mol^{-1} \cdot cm^{-1})$ 

Validité: solutions peu concentrées



#### **IDENTIFIER UNE ESPÈCE CHIMIQUE**

Gaz

### Équation d'état du gaz parfait :

$$PV = nRT$$

 $R = 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ , constante des gaz parfaits

P: pression dans le gaz (Pa)

V: volume de l'échantillon de gaz (m³)

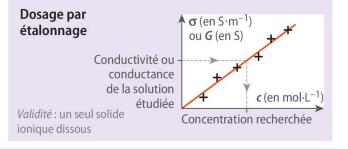
*n* : quantité de matière de gaz dans l'échantillon (mol)

*T*: température absolue du gaz (K)  $T(\text{en K}) = \theta \text{ (en °C)} + 273,15$ 

Validité: pression proche de la pression atmosphérique

#### Solutions contenant des ions

Loi de Kohlrausch :  $\sigma = \sum_{i} \lambda_{X_i} [X_i]$ 


 $\sigma$ : conductivité de la solution (S·m<sup>-1</sup>)

[X<sub>i</sub>]: concentration de l'ion  $X_i$  (mol·m<sup>-3</sup>)

 $\lambda_{X_i}$ : conductivité molaire ionique de l'ion  $X_i$  ( $S \cdot m^2 \cdot mol^{-1}$ )

Rabat IV

Validité: concentrations inférieures à 10<sup>−2</sup> mol·L<sup>−1</sup>



- ► Spectroscopie UV-visible