Thème 1 : Constitution et transformation de la matière

Partie 1. Méthodes physiques d'analyse

CHAP 01-ACT EXP Dilution et pH

Objectifs:

- Il s'agit d'effectuer des dilutions d'une solution d'acide chlorhydrique (H⁺_(aq) + Cl⁻_(aq)) et d'une solution d'hydroxyde de sodium (Na⁺_(aq) + HO⁻_(aq)).
- On mesurera ensuite le pH de ces différentes solutions afin de tester la relation entre le pH et la concentration en ion oxonium [H₃O⁺] apporté.

1. SOLUTION D'ACIDE CHLORHYDRIQUE

On dispose initialement d'une solution S_A d'acide chlorhydrique de concentration $C_A = 1.10^{-2}$ mol.L⁻¹

1.1. Préparation de la solution S_{1A}

a) Rédiger un protocole expérimental pour fabriquer, à partir de la solution S_A de concentration C_A , un volume de 100 mL de solution S_{1A} de concentration C_{1A} = 1.10⁻³ mol.L⁻¹. cf. FICHE METHODE-dilution

Montrer au prof pour vérification

b) Préparer soigneusement et avec précision cette solution.

Montrer au prof pour vérification

1.2. Préparation de la solution S2A

La solution S_{2A} de concentration C_{2A} est obtenue en ajoutant 80 mL d'eau distillée à 20 mL de la solution S_A de concentration C_A

a) Calculer la concentration C2A de la solution S2A

Montrer au prof pour vérification

b) Préparer soigneusement et avec précision cette solution.

1.3. Etude de la solution d'acide chlorhydrique

a) Etalonner le pH-mètre cf FICHE METHODE-pH-mètre avec les solutions tampons de pH = 4 et pH = 7.

Bien lire les indications suivantes pour l'utilisation du pH-mètre

Attention Attention Attention Attention Attention Attention Attention Attention Attention

- Manipuler délicatement et avec soin le pH-mètre. Ne laissez jamais l'électrode à l'air libre, elle doit toujours être dans une solution.
- Après chaque utilisation de l'appareil, rincer l'électrode à l'eau distillée et à la sécher avec un petit bout de papier filtre.
- Entre deux séries de mesures, ne pas éteindre le pH-mètre
- Si vous avez terminé les mesures, éteindre le pH-mètre et plonger l'électrode dans la solution de stockage après l'avoir rincée et séchée.

Attention Attention Attention Attention Attention Attention Attention Attention Attention Attention

- **b)** Mesurer les pH de ces solutions. On verse ces solutions dans un verre à pied pour mesurer le pH. Compléter le **tableau en ANNEXE**
- c) Quelle est la relation entre le pH de ces solutions et leurs concentrations ? Conclusion.

2. SOLUTION D'HYDROXYDE DE SODIUM

- Les solutions précédentes sont jetées. Toute la verrerie doit être soigneusement nettoyée et rincée à l'eau distillée avant de commencer cette partie.
- On dispose d'une solution S_B d'hydroxyde de sodium de concentration $C_B = 1.10^{-2}$ mol.L⁻¹.
- Etalonner le pH-mètre avec les solutions tampons pH = 7 et pH = 10.

2.1. Préparation de la solution S_{1B}

a) Rédiger un protocole expérimental pour fabriquer, à partir de la solution S_B de concentration C_B , un volume de 100 mL de solution S_{1B} de concentration $C_{1B} = 1.10^{-3}$ mol.L⁻¹. (cf annexe-dilution)

Montrer au prof pour vérification

b) Préparer soigneusement et avec précision cette solution.

Montrer au prof pour vérification

2.2. Préparation de la solution S2B

Rédiger un protocole expérimental pour fabriquer, à partir de la solution S_B de concentration C_B , 100 mL de solution S_{2B} de concentration $C_{2B} = 2.10^{-3}$ mol.L⁻¹. (cf annexe-dilution)

Montrer au prof pour vérification

a) Préparer soigneusement et avec précision cette solution.

Montrer au prof pour vérification

- b) On verse ces solutions dans un verre à pied pour mesurer le pH. Mesurer les pH de ces solutions et compléter le tableau en ANNEXE
- c) Quelle est la relation entre le pH de ces solutions et leurs concentrations ? Conclusion

3. DEFINITION DU PH

- a) Rappeler les définitions d'un acide et d'une base selon Bronsted, ainsi que la définition d'un couple Acide/Base.
- **b)** Rappeler la formule de l'ion oxonium.
- **c)** les ions oxoniums présents dans une solution aqueuse sont le produit de la réaction acido-basique entre un acide AH_(aq) dissous et l'eau. Indiquer les couples Acide/Base impliqués et écrire l'équation de la réaction.

Données :

Notation du couple Acide/Base dans le cas d'un acide quelconque : AH_(aq)/A⁻_(aq)

- d) rappeler la définition du pH.
- e) Compléter le tableau en ANNEXE