I. CHARGE ET DECHARGE D'UN CONDENSATEUR SOUS UNE TENSION CONSTANTE

1) Montage

$R = 5,6 \text{ k}\Omega$
$C = 1500 \ \mu F$
E = 10 V continu

ATTENTION:

Le condensateur est polarisé, il faut le branché dans le bon sens A-mètre sur le calibre 2 mA continu et branché dans le bon sens V-mètre sur le calibre 20 V continu et branché dans le bon sens

2) Manipulation

- Placer l'interrupteur sur la position 2 : Le condensateur se charge.
- Relever l'intensité i et la tension u_c en fonction du temps.
- Placer ensuite l'interrupteur sur la position 1 : le condensateur se décharge.
- Refaire les mêmes mesures au cours du temps.

Charge : position 2 de l'interrupteur

t (s)	0	10	20	30	40	50	60	70	80	90	100
i _C (mA)											
U _C (V)											

Décharge : position 1 de l'interrupteur

t (s)	0	10	20	30	40	50	60	70	80	90	100
i _C (mA)											
$U_{C}(V)$											

3) Exploitation

• Tracer, sur un même graphique, i et u_C en fonction du temps pour la position 2 de l'interrupteur.

• Tracer, sur un même graphique, i et u_c en fonction du temps pour la position 1 de l'interrupteur.

- Sur un des graphiques, tracer la tangente à l'origine et déterminer la constante de temps τ.
- Trouvez τ par une autre méthode graphique.
- Vérifier que $\tau = RC$.
- Lors de la charge (interrupteur sur la position 2), écrire la loi d'additivité des tensions dans le circuit.

Que vaut la tension u_c au temps t = 0 ? En déduire que l'intensité au temps t =0 s'écrit :

- $i(0) = \frac{E}{R}$
- Lors de la décharge (interrupteur sur la position 1), en déduire que l'intensité au temps t =0 s'écrit: $i(0) = -\frac{E}{R}$
- Quels sont les différents régime observables concernant la tension uc?
- La tension uc varie-t-elle de façon discontinue ou continue au cours du temps ?

Mme BOILLET

II. ETUDE DE LA CHARGE D'UN CONDENSATEUR A L'AIDE D'UN SYSTEME D'ACQUISITION

1) schéma de principe

$R = 10 k\Omega$	
$C = 1 \mu F$	
$E = 5 \dot{V}$	

2) Montage

- Le générateur E = 5V est celui de l'interface sysam : les bornes masse met + 5V se trouvent dans le cadran « alimentations ».
- Attention à la polarité du condensateur : l'encoche doit être côté + du générateur.
- Les bornes M, E₁ et E₂ de l'interrupteur inverseur se trouvent sur le module carré bleu.
- Placer l'interrupteur inverseur-déclencheur sur E1.
- Le basculement de l'interrupteur de E₁ sur E₂ entraînera la charge du condensateur et déclenchera de façon synchrone l'acquisition des mesures (ceci à condition d'avoir relié la borne **M** à l'entrée **synchro externe** de l'interface).
- La tension u_C est mesurée sur l'entrée **EA**₀ de l'interface.

- Appuyer sur l'icône $\boxed{!}$ ou la touche F10 du clavier pour lancer la mesure, attendre 3 à 4 secondes puis basculer l'interrupteur inverseur du module bleu <u>de la position E_1 à la position E_2 </u>

- Le graphe représentant les variations de uc =f(t) au cours de la charge du condensateur s'affiche sur l'écran

S'il y a un problème, pouvez interrompre l'acquisition en appuyant sur la touche Echap du clavier, puis recommencer l'opération

- Afficher la courbe en utilisant l'échelle maximale : faire un clic droit sur la fenêtre graphique puis calibrage.
- Allez ensuite dans la fenêtre « liste des courbes » ______et renommer votre courbe (double clic sur le nom) R 10kilo et C 1 micro

Montrer la courbe au prof pour savoir si vous pouvez continuer

4) Recommencer l'opération d'acquisition avec

- Une résistance de R = $5,6 \text{ k}\Omega$ et un condensateur de C = 1 µF. Renommer votre courbe (double clic sur le nom) **R 5 6kilo et C 1 micro** - Une résistance de R = 10 k Ω et un condensateur de C = 0,22 µF Renommer votre courbe (double clic sur le nom) **R 10 kilo et C 0 22 micro** *Montrer les courbes au prof pour savoir si vous pouvez continuer*

III. EQUATIONS DIFFERENTIELLES 1) Lors de la charge (interrupteur sur E_2)

a) On donne l'expression de la tension aux bornes du condensateur lors de la charge : Uc = E.(1- $e^{-\tau}$) Avec τ = R.C la constante de temps.

b) On donne l'expression de l'intensité aux bornes du condensateur lors de la charge : $i = I_0$. $e^{-\tau}$

Avec
$$I_0 = \frac{E}{R}$$

2) Lors de la décharge (interrupteur sur E₁)

a) On donne l'expression de la tension aux bornes du condensateur lors de la décharge : Uc = Ee^{τ} Avec τ = R.C la constante de temps.

b) On donne l'expression de l'intensité aux bornes du condensateur lors de la décharge : $i = -I_0$. $e^{-\tau}$

Avec
$$I_0 = \frac{E}{R}$$
 et décharge

IV. TRAITEMENT MATHEMATIQUE DES DONNEES AVEC LATIS PRO 1) Détermination de la constante de temps

a) Tracer la tangente à l'origine

Le logiciel Latispro vous permet de tracer la tangente à la courbe en différents points.

- Faire un clic droit avec la souris, sélectionner tangente, placer la tangente en t = 0 s

b) Sélectionner le réticule : lire la valeur de la constante de temps τ_{exp} pour les 3 courbes

Regroupez vos résultats dans le tableau ci-dessous

R	10 kΩ	5,6 kΩ	10 kΩ
С	1 µF	1 µF	0,22 µF
τ _{exp}			
$\tau_{théo} = R.C$			
5.τ _{exp}			
Tension aux bornes du condensateur pour $5.\tau_{exp}$			

c) Calculer les constantes de temps théoriques $\tau_{théo}$. Compléter le tableau ci-dessus.

- Comparer τ_{exp} et $\tau_{\text{théo}}.$ Conclusion ?

d) calculer $5.\tau_{exp}$ pour les 2 dernières colonnes du tableau.

- Lire la valeur de la tension aux bornes du condensateur après 5. τ_{exp} puis compléter le tableau ci-dessus

- Comparer ces valeurs à E et conclure.

e) Quelle est l'influence des valeurs de C et R sur la charge d'un condensateur ?

2) Modélisation de la tension u_Clors de la charge

- Allez dans la fenêtre « liste des courbes »

- Supprimer toutes les courbes (sélectionner la courbe à supprimer puis appuyer sur la touche Suppr du clavier) <u>sauf</u> celle de qui correspond à R = 10 k Ω et C = 0,22 μ F

- Lancer la modélisation en suivant les indications ci-dessous :

Appuyer sur l'icône 🔼 ou sur la touche F4 du clavier	Modélisation
	Courbe à modéliser
Sélectionner la courbe et la glisser ici	Glisser la courbe source ici
	Courbe modèle
Choisir le modèle	Glisser la courbe destination ici
	Modèles :
Cliquer pour lancer la modélisation	Choisir un modèle
Cliquer pour obtenir les résultats de la modélisation	Calculer le modèle
 a) Noter survoire rapport le modele choisi b) Retrouver la valeur de E puis de la constante de temps τ. Justifier votre dém c) Comparer E et τ à la valeur théorique, conclusion ? V. ETUDE DE LA DECHARGE DU CONDENSATEUR Sur le montage choisir comme composant R = 10 kΩ et C = 1 μF Effacer toutes les courbes précédentes Dans la fenêtre « paramètres d'aquisition » (cf ci-contre) : 	Paramètres Acquistion Entrées Analogiques Mode différentiel UCdécharge EA4 EA1 EA5 EA2 EA3 EA7
Sélectionner la voie EA0 puis la renommer UCdecharge, pour ce faire : Clic droit sur EA0 puis choisir « propriétés de la courbe »	Ajouter les courbes Acquisition Temporelle Périodique Pas à pas XY
Choisir : 1000 points et temps total d'acquisition :70 ms	Normal Points 1000 Ο Lent Total 70 ms Ττοταί Το ται 70 μs
Choisir : Source Externe et sens Descendant	Mode permanent Déclenchement Source Externe Sens Descandent
Appuyer sur l'icône ou la touche F10 du clavier pour lancer la mesure, at 3 à 4 secondes puis basculer l'interrupteur inverseur du module bleu de la po	tendre

- Le graphe représentant les variations de uc =f(t) au cours de la décharge du condensateur s'affiche sur l'écran

S'il y a un problème, pouvez interrompre l'acquisition en appuyant sur la touche Echap du clavier, puis recommencer l'opération

- Afficher la courbe en utilisant l'échelle maximale : faire un clic droit sur la fenêtre graphique puis calibrage.
- Allez ensuite dans la fenêtre « liste des courbes » et renommer votre courbe (double clic sur le nom) R 10kilo et C 1 micro

Montrer la courbe au prof pour savoir si vous pouvez continuer

1) a) A l'aide de Latis Pro et de la tangente à l'origine, déterminer la constante de temps τ'_{exp} pour la décharge, justifier votre démarche

b) Comparer τ'_{exp} pour la décharge à τ_{exp} pour la charge, conclusion ?

2) Déterminer la constante de temps τ'_{exp} à l'aide d'une autre méthode, détailler votre démarche

3) Modéliser la tension aux bornes du condensateur lors de la décharge

- a) Noter sur votre rapport le modèle choisi
- **b)** Retrouver la valeur de E et de τ'_{exp} . Conclusion

Mme BOILLET

MATERIELPAR GROUPE

- interface sysam
- plaque UME
- un générateur de tension (les jaunes)
- des fils de connexion
- une résistance de 10 k Ω
- une résistance de 5,6 kΩ
- un ampèremètre
- un voltmètre
- un condensateur chimique de capacité de 1500 µF
- un condensateur de capacité $C = 1 \mu F$
- un condensateur de capacité $C = 0,22 \mu F$
- un chronomètre
- un interrupteur type baïonnette

QUELQUES ASTUCES AVEC LATIS PRO

résultats de la modélisation:

pour supprimer Δ et V0 du modèle : imposer Δ et V0 = 0 , décocher actif et refaire calculer le modèle pour afficher les résultats de la modélisation sur le graphique :copier le résultat dans le presse papier clic droit sur le graphe : créer commentaire puis coller le contenu du presse papier

afficher les positions du réticule :

après avoir positionner le réticule, refaire un clic droit et cliquer de nouveau sur réticule.