Objectifs:

Trouver le critère d'évolution spontanée d'un système chimique à partir d'expériences en réinvestissant les connaissances relatives aux réactions acide-base et aux équilibres chimiques.

Appliquer ce critère aux réactions d'oxydoréduction en particulier.

I. RÉACTIONS ACIDO-BASIOUE

La manipulation proposée met en jeu des solutions dans lesquelles interviennent deux couples acide/base pour lesquels les pK_A sont donnés ci-dessous :

Couple 1: $NH_{4}^{+}(aq) / NH_{3(aq)}$ $pK_{A1} = 9, 2$ $K_{A1} = 6,3.10^{-10}$ Couple 2: $HCO_{3}^{-}(aq) / CO_{3}^{-}(aq)$ $pK_{A2} = 10, 3$ $K_{A2} = 5,0.10^{-11}$

On dispose de 4 solutions aqueuses S_1 , S_2 , S_3 , S_4 de concentrations identiques $C_0 = 0.10$ mol.L⁻¹:

- S_1 : Solution aqueuse de chlorure d'ammonium $(NH_4^+_{(aq)} + Cl_{(aq)}^-)$

- S₂: Solution aqueuse d'ammoniac appelée ammoniaque (NH_{3(aq)})

- S₃: Solution aqueuse d'hydrogénocarbonate de sodium (Na⁺_(aq) + HCO_{3 (aq)})

- S_4 : Solution aqueuse de carbonate de sodium $(2Na^+_{(aq)} + CO_3^{2-}_{(aq)})$

1) Manipulation.

On se propose de suivre l'évolution de deux mélanges A et B.

Préparer les mélanges N°A et N°B décrits dans le tableau ci-dessous.

Constituants du mélange	Mélange N° A	Mélange N° B
Solution aqueuse de chlorure d'ammonium (NH ₄ ⁺ + Cl ⁻)	$V_1 = V = 10 \text{ mL}$	$V_1 = V = 2.0 \text{ mL}$
Solution aqueuse d'ammoniac appelée ammoniaque (NH ₃)	$V_2 = V = 10 \text{ mL}$	$V_2 = 10.V = 20 \text{ mL}$
Solution aqueuse d'hydrogénocarbonate de sodium (Na ⁺ +HCO ₃ ⁻)	$V_3 = V = 10 \text{ mL}$	$V_3 = 10.V = 20 \text{ mL}$
Solution aqueuse de carbonate de sodium (2 Na ⁺ + CO ₃ ²⁻)	$V_4 = V = 10 \text{ mL}$	$V_4 = V = 2,0 \text{ mL}$
	$V_{total} = 40 \text{ mL}$	$V_{total} = 44 \text{ mL}$
	pH _A =	$pH_B =$

a) Homogénéiser. Mesurer le pH de chaque mélange. Inscrivez la valeur dans le tableau ci-dessus.

2) Questions.

- a) Quelle est l'équation de la réaction acido-basique susceptible de se produire entre les espèces de ces deux couples ?
- b) Cette écriture préjuge-t-elle du sens dans lequel a lieu la transformation ?
- c) Calculer la constante d'équilibre K associée à la réaction où NH₄⁺_(aq) est écrit à gauche

Rem: si on l'écrivait dans l'autre sens, la constante d'équilibre serait K' = 1/K).

POUR LE MELANGE A

- a) Calculer le quotient de réaction $Q_{r,i}$ dans l'état initial du système après mélange ($V_{total} = 40 \text{ mL}$).
- **b**) Sachant que, quel que soit l'état initial d'un système, Q_r tend vers K, prévoir le sens d'évolution (direct ou inverse) du système en utilisant la valeur de $Q_{r,i}$.
- c) Y a- t- il lieu de prévoir un accroissement ou une diminution des concentrations molaires de $[NH_4^+_{(aq)}]$ et $[CO_3^2_{(aq)}^-]$
- Y a- t- il lieu de prévoir un accroissement ou une diminution des concentrations molaires de $[NH_{3(aq)}]$ et $[HCO_{3(aq)}]$
- Comment varie le rapport $\frac{[NH_{3(aq)}]}{[NH_{4(aq)}^+]}$ et $\frac{[CO_{3(aq)}^{2-}]}{[HCO_{3(aq)}^-]}$?

- d) Calculez le rapport $\frac{[NH_{3(aq)}]_i}{[NH_{4(aq)}^+]_i}$ pour le mélange considéré ($V_{total} = 40 \text{ mL}$)
- Calculez le rapport $\frac{[NH_{3(aq)}]_{equ}}{[NH_{4-(aq)}]_{equ}}$ pour le mélange considéré ($V_{total} = 40 \text{ mL}$)
- Comparer $\frac{[\mathrm{NH_{3(aq)}}]_i}{[\mathrm{NH_{4(aq)}^+}]_i}$ et $\frac{[\mathrm{NH_{3(aq)}}]_{equ}}{[\mathrm{NH_{4(aq)}^+}]_{equ}}$. Le système a-t-il évolué dans le sens prévu ?

AIDE : Pour calculer
$$\frac{[NH_{3(aq)}]_{equ}}{[NH_{4(aq)}]_{equ}}$$
, utilisez l'expression donnant: $K_{A1} = \frac{[NH_{3(aq)}]_{equ}[H_3O^+_{(aq)}]_{equ}}{[NH_4^+_{(aq)}]_{equ}}$

POUR LE MELANGE B

- a) Calculer le quotient de réaction $Q_{r,i}$ dans l'état initial du système après mélange ($V_{total} = 44 \text{ mL}$).
- b) Sachant que, quel que soit l'état initial d'un système, Q_r tend vers K, prévoir le sens d'évolution (direct ou inverse) du système en utilisant la valeur de Q_{r, i}.
- c) Y a- t- il lieu de prévoir un accroissement ou une diminution des concentrations molaires de $[NH_4^+_{(aq)}]$ et $[CO_3^2_{(aq)}]$
- Y a- t- il lieu de prévoir un accroissement ou une diminution des concentrations molaires de $[NH_{3(aq)}]$ et $[HCO_{3(aq)}]$
- Comment varie le rapport $\frac{[NH_{3(aq)}]}{[NH_{4(aq)}^+]}$ et $\frac{[CO_{3(aq)}^{2-}]}{[HCO_{3(aq)}^-]}$?
- d) Calculez le rapport $\frac{[NH_{3(aq)}]_i}{[NH_{4(aq)}^+]_i}$ pour le mélange considéré $(V_{total} = 44 \text{ mL})$
- Calculez le rapport $\frac{[NH_{3(aq)}]_{equ}}{[NH_{4-(ac)}]_{equ}}$ pour le mélange considéré $(V_{total} = 44 \text{ mL})$
- Comparer $\frac{[\mathrm{NH}_{3(\mathrm{aq})}]_{i}}{[\mathrm{NH}^{+}_{4(\mathrm{aq})}]_{i}}$ et $\frac{[\mathrm{NH}_{3(\mathrm{aq})}]_{\mathrm{equ}}}{[\mathrm{NH}^{+}_{4(\mathrm{aq})}]_{\mathrm{equ}}}$. Le système a-t-il évolué dans le sens prévu ?

Q_{r. i} et K.

$$Q_{r,i}$$
 K

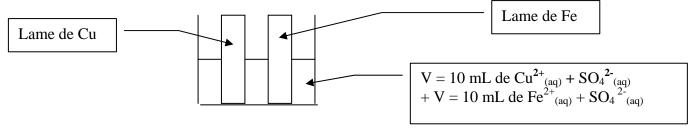
 $Comment\ a\ \text{\'evolu\'e}\ le\ syst\`eme\ chimique\ lorsque}\ Q_{r,\,i} > K\ ?\ Noter\ ce\ sens\ sur\ le\ graphique\ ci-dessous\ entre}\ Q_{r,\,i}$ et K.

$$\begin{array}{c|c} \mathbf{K} & \mathbf{Q_{r,i}} \\ \hline \end{array} \longrightarrow \mathcal{Q}_r$$

Y aurait-il évolution si le système était dans un état tel que $Q_{r,i} = K$?

$$Q_{r,i}$$

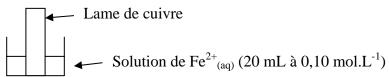
III. APPLICATION DU CRITERE D'EVOLUTION AUX REACTIONS D'OXYDOREDUCTION:


Système chimique constitué des 2 couples redox Fe²⁺_(aq)/Fe_(s) et Cu²⁺_(aq)/Cu_(s).

1) Expérience 1.

Plonger une plaque de cuivre et une plaque de fer dans le mélange constitué par :

- V = 10 mL de solution aqueuse de sulfate de cuivre de concentration apportée C = 0.10 mol. L^{-1} et V = 10 mL de solution aqueuse de sulfate de fer II de concentration apportée C = 0.10 mol. L^{-1} .


(Éventuellement, ajouter de la poudre de fer pour accélérer la transformation chimique).

- a) Qu'observe-t-on?
- **b**) Quelle est la réaction chimique qui se produit ? (Sa constante d'équilibre vaut $K_1 = 10^{26}$)
- c) Pouvait-on prévoir cette évolution ?

2) Expérience 2.

Plonger une seule lame de cuivre dans une solution de sulfate de fer II.

- a) Qu'observe-t-on?
- b) Ecrire l'équation envisageable de la réaction.

<u>DONNEES</u>: Constante de réaction : $K_2 = 10^{-26}$ avec : $K_2 = 1/K_1$

- c) Calculer Q_{r. i}
- d) Utiliser le critère d'évolution pour conforter les observations expérimentales.

IV. APPLICATION DU CRITERE D'EVOLUTION AUX REACTIONS D'OXYDOREDUCTION:

Système chimique constitué des 2 couples redox Fe^{3+} (aq) $/ Fe^{2+}$ (aq) et I_{2} (aq) $/ I^{-}$ (aq)

1) Quelle réaction chimique est susceptible de se produire entre les espèces de ces couples ?

(Ecrire $Fe^{3+}_{(aq)}$ à gauche, la constante d'équilibre est alors $K = 10^{7.6} = 4.0.10^7$)

Rem : Si on l'écrivait dans l'autre sens, la constante d'équilibre serait K' = 1 / K Ecrire d'abord les ½ équations électroniques

2) Préparer dans 2 béchers les mélanges suivant :

	BECHER N°1		
$Fe^{2+}_{(aq)}$ à $C_0 = 1,0.10^{-3}$ mol.L ⁻¹	$V_0 = 1.0 \text{ mL}$	$V_1 = 11 \text{ mL}$	
$Fe^{3+}_{(aq)}$ à C = 0,10 mol.L ⁻¹ = 100.C ₀	$V = 10.V_0 = 10,0 \text{ mL}$		
	BECHER N°2		$V_{total} = 22 \text{ mL}$
$I_{2(aq)}$ à $C_0 = 1,0.10^{-3}$ mol.L ⁻¹	$V_0 = 1.0 \text{ mL}$	V_2 = 11 mL	
$\Gamma_{\text{(aq)}} \text{ à C} = 0.10 \text{ mol.L}^{-1} = 100.C_0.$	$V = 10.V_0 = 10.0 \text{ mL}$		

- 3) Quelle est la couleur de la solution de chaque bécher?
- 4) Mélanger les deux béchers.
- 5) Quelle est la couleur de la solution obtenue ? A quelle espèce est-elle due ?
- 6) Calculer le quotient de réaction Q_{r, i} dans l'état initial après mélange.
- 7) a) Quel est le sens d'évolution prévisible par application du critère d'évolution d'un système chimique ?
 - b) Correspond-il à celui observé expérimentalement ?

MATERIEL PAR GROUPE:

- 1 éprouvette graduée de 25 mL;
- 1 éprouvette graduée de 10 mL;
- 4 béchers de 100 mL;
- 4 béchers de 50 mL:
- 1 pH-mètre et ses accessoires ; tampons pH = 7 et 10
- 1 pipette graduée pour mesurer 2 mL (ou pipette jaugée)
- Eau distillée ou déminéralisée
- 1 lame de cuivre
- 1 lame de fer
- limaille de fer

PRODUITS AU BUREAU:

- 500 mL d'une solution de chlorure d'ammonium (NH₄⁺+ Cl') à 0,10 mol.L⁻¹
- 1L d'une solution d'ammoniaque (NH $_3$) à 0,10 mol.L $^{-1}$.
- 1L d'une solution d'hydrogénocarbonate de sodium (Na⁺ + HCO₃⁻) à 0,10 mol.L⁻¹.
- 500 mL d'une solution de carbonate de sodium (2 Na $^+$ + CO $_3^{2-}$) à 0,10 mol.L $^-$ 1. . 250 mL d'une solution ACIDIFIEE de chlorure de fer III (Fe $^{3+}$ + 3Cl $^-$) à 0,10 mol.L $^{-1}$
- 1L d'une solution de sulfate de fer II (Fe $^{2+}$ + SO $_4$ ²⁻) à 0,10 mol.L $_2$ -1
- 250mL d'une solution de sulfate de fer II (Fe $^{2+}$ + SO_4 2) à 1,0.10 3 mol.L 1
- 250 mL d'une solution de diiode (I₂) à 1,0.10 ⁻³ mol.L⁻¹
- 500 mL d'une solution d'iodure de potassium ($K^+ + \Gamma$) à 0,10 mol. L^{-1}
- 500 mL d'une solution de sulfate de cuivre $(Cu^{2+} + SO_4^{2-})$ à 0,10 mol.L⁻¹

MATERIEL AU BUREAU:

- 10 béchers de 250 mL
- marqueur