TP de chimie n°3 SPECTROPHOTOMETRIE dosage par étalonnage et suivi cinétique d'une réaction chimique Terminale

objectifs:

- Connaître la technique de spectrophotométrie.
- Connaître et savoir utiliser la relation entre l'absorbance et la concentration d'une espèce absorbante en solution.
- Suivi spectrophotométrique d'une transformation chimique.

I. LOI DE BEER – LAMBERT ET APPLICATION AU TITRAGE D'UNE SOLUTION

1) Obtention d'une échelle de teintes

On dispose d'une solution aqueuse de diiode S_0 de concentration molaire $C_0 = 1.0 \times 10^{-3}$ mol. L^{-1} et d'une solution de Lugol pharmaceutique que l'on a dilué 100 fois (S_1) .

On cherche à réaliser différentes solutions de diiode de concentrations C_i connues (cf. tableau ci-dessous).

2) Mode opératoire.

Attention chaque groupe va fabriquer 1 solution S_i , demander au prof pour connaître le n $^{\bullet}$ de votre groupe

- A l'aide d'une burette graduée, introduire dans un tube à essais, un volume V_i de la solution S_0 de diiode (cf tableau ci-dessous). A l'aide d'une autre burette graduée, compléter à 10~mL avec de l'eau distillée
- Boucher et bien agiter.

N° du groupe	N° du tube		Volume d'eau à ajouter (mL)	Volume total (mL)	Concentration C _i de la solution diluée de diiode (moL.L ⁻¹)
1	1	1,0	9,0	10,0	0,0001
2	2	2,0	8,0	10,0	0,0002
3	3	3,0	7,0	10,0	0,0003
4	4	4,0	6,0	10,0	0,0004
5	5	5,0	5,0	10,0	0,0005
6	6	6,0	4,0	10,0	0,0006
7	7	7,0	3,0	10,0	0,0007
8	8	8,0	2,0	10,0	0,0008
9	9	9,0	1,0	10,0	0,0009
10	10	10,0	0	10,0	0,0010

3) Utilisation du spectrophotomètre

Réalisation du blanc

- Brancher le porte cuve à l'extrémité de la fibre optique, brancher le câble d'alimentation électrique.
- Ouvrir le fichier _abs_cuve (fichier de paramétrage) essentiel au fonctionnement en absorption). Si besoin ajuster la Sensibilité pour ne pas saturer le signal.
- Mettre une cuve d'eau distillée dans le porte cuve,
- cliquer sur **a** . Le spectre est celui de la source halogène.
- Cliquer sur .. U Le logiciel s'apprête à réaliser une mesure en absorption.
- Choisir « Courbe active » pour indiquer que le blanc est le spectre actuellement à l'écran.

Loi de Beer Lambert

- Cliquer sur l'intercalaire « Beer Lambert ».
- Cliquer sur « changer lambda » et indiquer la nouvelle longueur d'onde de travail. $\lambda = 450 \text{ nm}$
- Mettre un échantillon dans le porte cuve, attendre quelques secondes, cliquer sur « nouveau point » et indiquer la concentration dans le tableau (uniquement en caractères décimaux). Valider par « Enter ».
- Répéter l'opération avec les solutions connues,

4) Relation entre absorbance et concentration

- Exporter la courbe A= f(C) dans Régressi (attention dans Régressi il faut rebaptiser Absorbance par A, sans unité et Concentration par C, en mol/L puis changer les coordonnées : mettre A en ordonnée et C en abscisse).
- A l'aide de la courbe, établir une relation mathématique simple entre l'absorbance et la concentration de diiode pour la longueur d'onde de travail (l'équation de la courbe sera obtenue par modélisation).
- Imprimer la courbe.

Résumé:

Pour une solution de diode, à la longueur d'onde 450 nm et pour une longueur de cuve de 1 cm , on a montré que A=kC avec $k=\ldots$

- Généraliser en énonçant la loi de Beer Lambert.

5) Mesure de l'absorbance de la solution de Lugol

- Placer dans le spectro une cuve contenant la solution diluée de Lugol de concentration inconnue et relever la valeur de l'absorbance A, noter cette valeur sur votre rapport
- Déterminer à l'aide de la courbe, la concentration C de la solution diluée de Lugol. Détailler votre méthode.
- En déduire la concentration C₀ de la solution pharmaceutique de Lugol.

II. SUIVI DE LA CINETIQUE DE LA REACTION ENTRE L'EAU OXYGENEE ET LES IONS IODURES.

1) Mode opératoire de l'acquisition informatique (réalisé par le professeur)

Régler la longueur d'onde de travail : λ = 450 nm

- -Cliquer sur l'interçalaire « Cinétique ».
- Cliquer sur 🛕 pour définir les paramètres de l'acquisition :

Temps Total de l'expérience (t = 1200 s), valider par « Enter ».

Pas minimum et pas maximum (toutes les 10 s).

Longueur d'onde de travail λ = 450 nm. Valider par « Enter ».

- Mélanger dans un bécher :

10,0 mL de solution d'iodure de potassium dont la concentration en ions iodures est de $[\Gamma_{(aq)}] = 0,2$ mol. L^{-1} 6,0 mL d'acide sulfurique dont la concentration en ions hydrogène est de $[H^+_{(aq)}] = 0,2$ mol. L^{-1} 10 mL d'eau distillée.

A la date t = 0s correspondant au démarrage de l'acquisition, ajouter : 4,0 mL de solution H_2O_2 à 0,01 mol. L^{-1} .

- Mélanger les réactifs, placer la cuve dans le porte cuve, cliquer sur « Démarrer ». Pendant la réaction, la vue en haut à gauche affiche l'état de l'absorbance à la longueur d'onde sélectionnée. Le logiciel est bloqué jusqu'au terme de l'enregistrement.
- Au terme de l'enregistrement, vous pouvez choisir une autre longueur d'onde de travail.
- Double cliquer sur les vues en coupe pour effectuer des mesures, exporter A = f(t) vers Régressi.
- Imprimer la courbe

2) Exploitation

- a) Etablir l'équation de la réaction entre l'eau oxygénée et l'ion iodure
- **b**) Calculer le nombre de moles d'ions iodures noté $n_0(\Gamma_{(aq)})$, d'ions H^+ noté $n_0(H^+_{(aq)})$, et d'eau oxygénée notée $n_0(H_2O_{2(aq)})$
- c) Etablir le tableau d'avancement (on notera x l'avancement de la réaction).
- **d**) Déterminer l'avancement maximal x_{max} et le réactif en défaut si l'on suppose la réaction totale.
- e)On dispose de la courbe A = f(t) et on a montré que A = k C avec $C = [I_2]$. Dans Regressi, faire "grandeurs", Y+, créer la variable calculée, en mol/L, C = A/k en remplaçant k par la valeur que vous avez obtenue précédemment. Tracer la courbe C = f(t).
- **f**) A l'aide du tableau d'avancement montrer que $x = C V_{tot}$ avec $V_{tot} = 30 \text{ mL} = 0.03 \text{L}$. Dans Regressi, faire "grandeurs", Y+, créer la variable calculée, en mol, x = C*0.03 Tracer x = f(t). Imprimer la courbe.
- g) Quel fait expérimental nous indique que la réaction est bien terminée à t = 1200 s? Quel fait expérimental nous indique que la réaction est bien totale à t = 1200 s?
- **h)** Déterminer $t_{1/2}$. Détailler votre méthode
- i) Calculer les deux vitesses de réaction à la date t = 100 s et t = 600 s. Détailler la méthode. Commenter le résultat.

DONNEES:

Eau oxygénée/Eau $H_2O_{2(aq)}/H_2O_{(l)}$ Diiode/Ion iodure $I_{2(aq)}/\Gamma_{(aq)}$ TP de chimie n°3

SPECTROPHOTOMETRIE

dosage par étalonnage et suivi cinétique d'une réaction chimique

Terminale

MATERIEL AU BUREAU:

- Spectrophotomètre + cuves (salle 304)
- Grands tubes à essais
- 1 pipette graduée de 10 mL + pipeteur
- 1 pipette graduée de 2 mL
- 3 béchers de 50 mL
- 3 bécher de 100 mL
- 1 agitateur en verre
- 2 marqueurs noirs
- 2 burette graduée de 25 mL

PRODUITS AU BUREAU:

- 200 mL d'une solution de diode à 0,001 mol L-1
- solution de Lugol pharmaceutique dilué 100 fois
- 100 mL d'une solution d'iodure de potassium à 0,2 mol L-1
- 50 mL d'une solution d'acide sulfurique à 0,1 mol L-1 (0,2 mol/L en ions H+)
- 100 mL d'une solution d'eau oxygénée à 0,01 mol L⁻¹
- eau distillée