Partie Observer : Ondes et matière

CHAP 04-CORRIGE EXOS Analyse spectrale des composés organiques

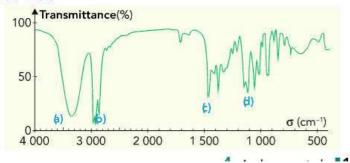
Exercices résolus p 101 à 103 N° 01 à 06

Exercices qui ne serons pas corrigé intégralement : p 104 à 107 N°08-09-16-17-18-21-22-23-24 Exercices p 108 à 112 N° 28-34 (niveau 2)-40

N°8) Utiliser un spectre pour déterminer une couleur

 λ_{max} = 450 nm, soit une absorption dans le domaine du violet-bleu, couleur complémentaire du jaune orangé.

N°9) Justifier une couleur à partir d'un spectre


Le vert de bromocrésol absorbe dans le bleu (λ = 450 nm), couleur complémentaire du jaune, et dans l'orangé (λ = 610 nm), couleur complémentaire du vert-bleu, d'où sa couleur à pH = 4,6

16 Reconnaître des bandes d'absorption

On utilisera si nécessaire le tableau du document 11, p. 96, ou de la fiche n° 11B, p. 594.

Un extrait du spectre infrarouge de l'hexan-2-ol est donné ci-dessous.

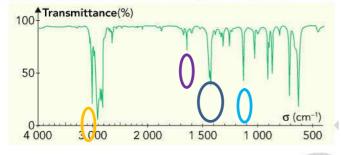
- 1. Écrire la formule semi-développée de l'hexan-2-ol. En déduire le groupe caractéristique et la fonction chimique de ce composé.
- 2. Identifier alors les bandes d'absorption notées (a), (b), (c) et (d).

- Groupe hydroxyle (fonction alcool).
- 2) (a) liaison OH; (b) liaison CH;
- (c) liaison CH; (d) liaison CO.

17 Utiliser un spectre pour déterminer une fonction

On utilisera si nécessaire le tableau du document 11, p. 96, ou de la fiche n° 11B, p. 594.

Un extrait du spectre infrarouge d'un composé A est donné ci-dessous.


- 1. Les molécules du composé A peuvent-elles, a priori, posséder:

- a. une liaison C_{tét} H?
 b. une liaison C_{tri} H?
 c. une liaison C C?
- d. une liaison C=C?
- e. une liaison O-H?

En déduire la fonction du composé A.

2. Le composé A est l'hex-1-ène.

Justifier alors les bandes d'absorption du spectre.

1) a) oui

b) oui

c) oui

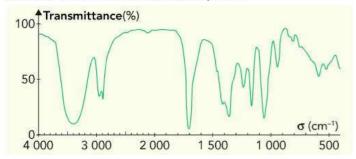
e) non

A possède une fonction alcène

2) La formule de l'hex-1-ène est :

$$H_2C = CH - CH_2 - CH_2 - CH_2 - CH_3$$

d'où les bandes observées.


18 Utiliser un spectre pour identifier une fonction

On utilisera si nécessaire le tableau du document 11, p. 96, ou de la fiche n° 11B, p. 594.

Un extrait du spectre infrarouge d'un composé B est donné ci-dessous.

- 1. Les molécules du composé B peuvent-elles, a priori, posséder :
- a. une liaison C_{tét}-H?
- b. une liaison C-C?
- c. une liaison C=C?
- d. une liaison O-H?
- e. une liaison C=O?
- f. une liaison C-O?
- 2. Le composé B peut-il, a priori, présenter :
- a. une fonction alcool?
- b. une fonction cétone?
- c. une fonction acide carboxylique?
- 3. Le composé B est la 1-hydroxybutanone $CH_3-CH_2-CO-CH_2-OH$.

Justifier alors les bandes d'absorption.

Les molécules du composé B peuvent, a priori, posséder :

a.

b.

d.

е

f.

2. Le composé B peut, a priori, présenter :

- a. une fonction alcool; b. une fonction cétone;
- c. une fonction acide carboxylique.

3. La formule de la 1-hydroxybutanone est :

d'où les bandes observées.

21 Attribuer des déplacements chimiques

On utilisera la fiche nº 11C, p. 595.

1. L'éthanoate de méthyle, $CH_3-CO-O-CH_3$, présente deux signaux correspondant, l'un à $\delta_1=2,0$ ppm, l'autre à $\delta_2=3,7$ ppm.

Attribuer à chaque groupe méthyle CH3 - son signal.

2. Les protons des deux groupes méthyle de CH_3 – Br et CH_3 – CH_2 – Br résonnent, l'un à δ_1 = 1,7 ppm, l'autre à δ_2 = 2,7 ppm.

Attribuer à chaque groupe méthyle CH₃ - son signal.

- 3. Les protons des deux groupes méthylène $-CH_2$ de $CH_3-O-CH_2-CH_3$ et $C_6H_5-O-CH_2-CH_3$ résonnent l'un à $\delta_1=3.4$ ppm, l'autre à $\delta_2=4.3$ ppm. Attribuer à chaque groupe méthylène $-CH_2$ son signal.
- **4.** Les protons des deux groupes méthyne -CH- de $(CH_3)_2CH-O-H$ et $(CH_3)_2CH-NH_2$ résonnent l'un à $\delta_1=2.8$ ppm, l'autre à $\delta_2=3.9$ ppm. Attribuer à chaque groupe méthyne -CH- son signal.

1) Le CH₃ de droite :
$$\delta_2$$
 = 3,7 ppm
Le CH₃ de gauche : δ_1 = 2,0 ppm

2)
$$CH_3$$
-Br : $\delta_2 = 2.7$ ppm

$$CH_3$$
- CH_2 - $Br : \delta_1 = 1,7 ppm$

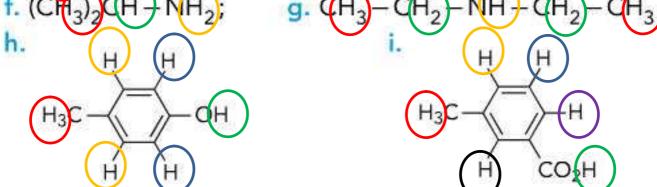
3) CH₃-O-CH₂-CH₃:
$$\delta_1$$
 = 3,4 ppm

$$C_6H_5$$
-O-C H_2 -C H_3 : $\delta_2 = 4.3 \text{ ppm}$

4) (CH₃)₂CH-O-H :
$$\delta_2$$
 = 3,9 ppm

$$(CH_3)_2CH-NH_2: \delta_1 = 2.8 \text{ ppm}$$

Identifier des protons équivalents


1. Recopier les formules ci-après, et surligner chaque groupe de protons équivalents.

(H)OH) -HD-QH $-(H_2)-(H_2)-(H_3)$

- e.
- f. Н CH_3 H30 Br

2. Combien de signaux comporte, a priori, le spectre de RMN des composés de formule :

- a. QH₃ b. CH
- d. (CH₃) CI CH CH2
- e. CHa
- NH.

2) Faut d'abords entourer les H équivalents car ils ne se couplent pas : ensuite:

a) 3 couleurs; 3 signaux

b. 2 signaux; c. 2 signaux;

d. 1 signal; e. 4 signaux; f. 3 signaux;

g. 3 signaux; h. 4 signaux; i. 6 signaux

Relier la multiplicité du signal au nombre de voisins

1. Préciser la multiplicité des signaux correspondant aux groupes méthyle CH3 - présents dans les extraits de chaînes carbonées suivants :

a.
$$CH_3 - CH_2 -$$
; b. $(CH_3)_3 C -$; c. $(CH_3)_2 CH -$

2. Préciser la multiplicité des signaux correspondant aux groupes méthylène - CH2 - présents dans les molécules suivantes:

b. (CH₃)₂CH – CH₂ – Br;

c.
$$H_2N - CH_2 - CH_2 - NH_2$$
; d. $HO - CH_2 - CH_2 - CI$.

3. Préciser la multiplicité des signaux correspondant aux groupes méthyne - CH - présents dans les molécules ci-dessous :

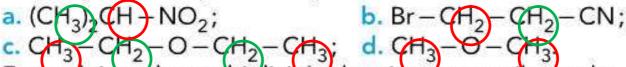
a. $(CH_3)_2CH-Cl$; b. $(CH_3)_3CH$; c. $HCCl_3$; d. $(CH_3)CHCl_2$.

1)a) 2 Voisin: 1 triplet b) 0 voisin: singulet c) 1 voisin: doublet

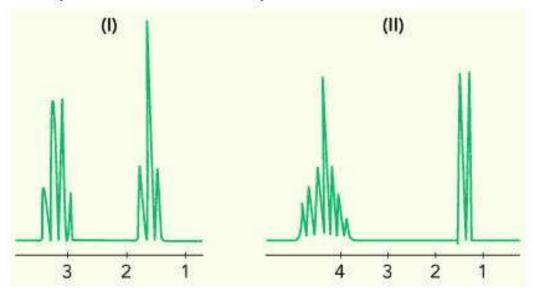
2) a) ne comptent que les voisins directs

3 voisins: quadruplet

b) 1 voisin : doublet


c) Les protons sont équivalents, ils se couplent pas, donc un singulet

d) H₂ de gauche : 2 voisins : triplet H₂ de droite: 2 voisins: triplet


- 3) a) heptuplet
- b) Décuplet
- c) singulet
- d) quadruplet

24 Reconnaître des signaux par leur multiplicité

On dispose des deux spectres (I) et (II) de RMN cidessous. Ces spectres sont ceux de deux composés choisis parmi les quatre composés suivants :

En exploitant les multiplicités des signaux, attribuer chacun des spectres à son composé.

- 1) On cherche tout d'abords, les groupes de protons équivalents
- 2) On cherche ensuite le nombre de signaux :
- a) donne 2 signaux
- b) donne 2 signaux
- c) donne 2 signaux
- d) donne 1 signal, ON ELIMINE D

3) a) Les 6 H (verts) on 1 voisin H (rouge), ils donnent un doublet Le H (rouge) à 6 voisins H (vert) ils donnent un heptuplet : DONC SIGNAL II

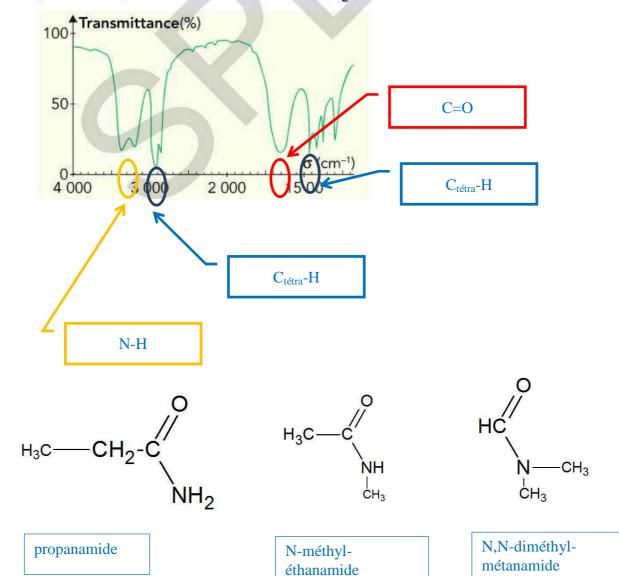
b) Les 2H (rouge) ont 2 voisins H (vert) ils donnent un triplet Les 2H (vert) ont 2 voisins H (rouge) ils donnent un triplet PAS BON CAR SUR LE SIGNAL 1 ON A UN QUADRUPLET

c) Les 3H (rouge) ont 2 voisins H (vert) ils donnent un triplet Les 2H (vert) ont 3 voisins H (rouge) ils donnent un quadruplet : OK

28 Composés azotés

COMPETENCES Exploiter un tableau et un graphique; raisonner.

On utilisera, si nécessaire, le tableau du document 11, p. 96, ou la fiche n° 11B, p. 594.


Le spectre infrarouge d'un composé organique A, de formule brute C₃H₇NO, est donné ci-dessous.

- 1. Le composé A possède des liaisons C_{tét}-H, C=O et N-H. Repérer leurs bandes caractéristiques dans le spectre, en précisant leurs nombres d'ondes.
- Le composé A est un amide.

2) a)

- a. Écrire et nommer tous les amides isomères du composé A.
- b. L'un de ces amides ne peut avoir le spectre proposé, lequel et pourquoi ?
- c. En déduire la formule et le nom de A.

Donnée : en infrarouge, la liaison N-H donne une bande pour N-H, et deux bandes pour $-NH_2$.

2)b) Le N,N-diméthyl-métanamide car il n'y a pas de liaison N-H

c) Comme il y a 2 bandes pour NH, il y a présence de NH2 donc c'est la propanamide

34 À chacun son rythme

COMPÉTENCES Exploiter un tableau et un graphique; raisonner.

Cet exercice est proposé à deux niveaux de difficulté. Dans un premier temps, essayer de résoudre l'exercice de niveau 2. En cas de difficulté passer au niveau 1.

On se reportera à la fiche n° 11C, p. 595.

Le spectre de RMN d'un composé A, de formule C_3H_9N , est donné ci-dessous.

Certains signaux ont été zoomés afin de les rendre plus visibles.

1) Propan-1-amine: CH₃-CH₂-CH₂-NH₂ Propan-2-amine: CH₃-CH(NH₂)-CH₃ N-méthyl-éthanamine: CH₃-CH₂-NH-CH₃

N,N-diméthyl-méthanamine ou triméthylamine :

(CH₃)₃N

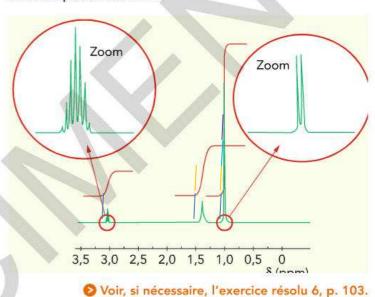
2) Courbe d'intégration :

A δ = 3 ppm la courbe et la moitié de celle qui se situe à δ = 1.4 ppm et de 1/6 ème par rapport à celle de δ = 1 ppm On a donc :

A δ = 3 ppm : 1 H A δ = 1,4 ppm : 2 H A δ = 1 ppm : 6 H

3) A δ = 3 ppm : 1 septuplet, il y a donc 6 H voisins A δ = 1,4 ppm : un singulet, il y a donc 0 H voisins A δ = 1 ppm : un doublet, il y a donc 1 H voisins

4) On cherche donc une molécule avec :


- 3 signaux
- A un endroit il y a 1 H, à un autre endroit 2 H et à un autre 6 H
- La ou il y a 1 H, il a comme voisins 6 H
- La ou il y a 6 H, il a comme voisins 1 H
- La ou il y a 2 H, il n'y a pas de couplage, donc c'est NH₂ : cf cours

On a donc:

Niveau 2 (énoncé détaillé)

- 1. Écrire les formules semi-développées de tous les isomères du composé A.
- 2. À l'aide de la courbe d'intégration, déterminer le nombre de protons correspondant à chaque signal.
- 3. En appliquant la règle des (n + 1)-uplets déterminer, pour chaque signal, le nombre de protons voisins du (ou des) proton(s) correspondant à ce signal.
- 4. Vérifier alors qu'une seule formule est compatible avec le spectre de RMN.

COMPÉTENCES Extraire et exploiter des informations; effectuer des calculs; raisonner.

On utilisera si nécessaire les **fiches n° 11A et 11B**, p. 594.

Le dosage de l'éthanol dans l'air expiré peut être effectué par des éthylotests ou des éthylomètres.

Éthylotests de catégories A

Ils sont constitués d'un tube rempli d'un solide imprégné d'une solution acidifiée de dichromate de potassium, 2 K⁺(aq) + Cr₂O₇²⁻(aq). Au contact de l'éthanol, les ions dichromate jaune-orangé, Cr₂O₇²⁻(aq), oxydent l'éthanol en acide éthanoïque avec formation d'ions, Cr³⁺ (aq) vert. Si l'air expiré contient de l'éthanol, un changement de couleur s'opère sur une longueur grossièrement proportionnelle à la concentration en alcool de l'air expiré; la précision est de l'ordre de 20 %.

Éthylotests de catégorie B

Dans ces appareils, grâce à un catalyseur, l'éthanol est oxydé en acide éthanoïque; cette réaction met en jeu des électrons dont la circulation génère un courant d'intensité proportionnelle à la concentration d'alcool. Cet appareil à mesure directe à une précision de l'ordre de 5 %.

Ces deux types d'appareils donnent des réponses positives avec d'autres alcools, l'éthanoate d'éthyle et l'éthanal généralement présents dans les vins ou les spiritueux.

Éthylomètres à infrarouge

Ces appareils font appel à la propriété qu'ont les alcools d'absorber dans l'infrarouge. Les premiers appareils utilisés réalisaient deux mesures, l'une pour $\lambda_1 = 3,39 \, \mu m$, l'autre pour $\lambda_2 = 3,48 \, \mu m$. La présence d'hydrocarbures dans l'air expiré, chez les fumeurs en particulier, a conduit les fabricants à développer des appareils effectuant des mesures pour $\lambda_3 = 9,46 \, \mu m$.

Les éthylomètres à infrarouge, appareils à lecture directe sont de plus en plus utilisés, leur précision est de l'ordre de 2 %.

> D'après Annales de Biologie clinique, 2003, vol. 61, nº 3, p. 269-279.

Le spectre d'une solution de dichromate de potassium, 2 K⁺(aq) + Cr₂O₇²⁻(aq), présente deux maxima, l'un pour $\lambda = 430$ nm, l'autre pour $\lambda \approx 500$ nm.

Le spectre d'une solution de chlorure de chrome (III), $Cr^{3+}(aq) + 3 Cl^{-}(aq)$, présente deux maxima, l'un pour $\lambda \approx 430$ nm, l'autre pour $\lambda \approx 640$ nm.

- 1. a. Justifier les couleurs perçues dans les éthylotests de catégorie A.
- b. Identifier les couples redox mis en jeu dans ces éthylotests.

En déduire l'équation de la réaction chimique qui se produit dans le tube de ces appareils.

- 2. Justifier que l'oxydation de l'éthanol en acide éthanoïque mette en jeu des électrons.
- 3. a. Quelle loi exploitent les éthylomètres?
- b. Déterminer les nombres d'ondes σ_1 et σ_2 , correspondant respectivement à λ_1 et λ_2 .

En déduire à quelle(s) bande(s) d'absorption du spectre infrarouge correspondent ces nombres d'ondes.

- c. Justifier que la présence d'hydrocarbures puisse fausser les mesures.
- **4.** a. Déterminer le nombre d'ondes σ_3 correspondant à λ_3 . En déduire à quelle bande d'absorption du spectre infrarouge correspond ce nombre d'ondes.
- b. La présence d'éthanal fausse-t-elle la mesure?
 Même question pour la présence d'éthanoate d'éthyle.
- 5. Pourquoi ne cherche-t-on pas à détecter la bande d'absorption relative au groupe hydroxyle.
- 6. a. Comment définir la précision de ces trois appareils?
- b. Quelle analyse médicale est-il nécessaire de faire pour déterminer effectivement ces précisions?
- c. Que penser des trois méthodes au niveau de leur précision?

1) a) λ = 430 nm correspond au violet, la couleur perçue c'est le complémentaire : jaune λ = 500 nm correspond au bleu, la couleur perçue c'est le complémentaire l'orange D'où la couleur jaune-orangé des solutions d'ion $\operatorname{Cr_2O_7^{2-}}_{(aq)}$

b) Couples et ½ équations :

$$\frac{1^{er} \frac{1}{2} \text{ équation}}{\text{Cr}_2 \text{O}_7^{2-}_{(aq)}/\text{Cr}^{3+}_{(aq)}}$$
:

$$Cr_2O_7^{\ 2^-}{}_{(aq)} + 14\ H^+{}_{(aq)} + 6\grave{e} \leftarrow Cr^{3^+}{}_{(aq)} + 7H_2O_{(e)}$$

2^{eme} ½ équation

acide éthanoïque /éthanol donc

 $CH_3-CO_2H_{(aq)}/CH_3-CH_2-OH(aq)$:

$$\overset{\rightarrow}{\text{CH}_3\text{-CH}_2\text{-OH}}_{(aq)} + \text{H}_2\text{O}_{(\ell)} \overset{\rightarrow}{\leftarrow} \text{CH}_3\text{-CO}_2\text{H}_{(aq)} + 4\text{H}^+_{(aq)} + 4\grave{\text{e}}$$

Equation bilan:

$$\text{Cr}_2\text{O}_7^{2-}_{(aq)} + 14 \text{ H}^+_{(aq)} + 6\grave{e} \leftarrow 2\text{Cr}^{3+}_{(aq)} + 7\text{H}_2\text{O}_{(e)}$$

$$CH_3-CH_2-OH_{(aq)}+H_2O_{(e)} \leftarrow CH_3-CO_2H_{(aq)}+4H^+_{(aq)}+4\grave{e}$$

$$\begin{aligned} &2\text{Cr}_2{\text{O}_7}^{2^-}{}_{(aq)} + \text{ 2.14 H}^+{}_{(aq)} + \text{ 3. CH}_3 - \text{CH}_2 - \text{OH}_{(aq)} + \text{ 3H}_2{\text{O}_{(\mathfrak{C})}} & \leftarrow \text{ 4Cr}^{3^+}{}_{(aq)} + \text{ 2.7H}_2{\text{O}_{(\mathfrak{C})}} + \text{ 3.4H}^+{}_{(aq)} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} \\ &2\text{Cr}_2{\text{O}_7}^{2^-}{}_{(aq)} + \text{ 28 H}^+{}_{(aq)} + \text{ 3. CH}_3 - \text{CH}_2 - \text{OH}_{(aq)} + \text{ 3H}_2{\text{O}_{(\mathfrak{C})}} & \leftarrow \text{ 4Cr}^{3^+}{}_{(aq)} + \text{ 14H}_2{\text{O}_{(\mathfrak{C})}} + \text{ 12H}^+{}_{(aq)} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} \\ & + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} \\ & + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} \\ & + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} \\ & + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} \\ & + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} \\ & + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} \\ & + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} \\ & + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} \\ & + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} \\ & + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} \\ & + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} \\ & + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} \\ & + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_{(aq)}} \\ & + \text{ 3CH}_3 - \text{CO}_2{\text{H}_3 - \text{CO}_2{\text{H}_3} + \text{CO}_2{\text{H}_3} + \text{ 3CH}_3 - \text{CO}_2{\text{H}_3} + \text{ 3CH}_3 - \text{CO}_2{\text{H$$

$$\mathbf{2Cr_2O_7}^{2-}_{(aq)} + \mathbf{16} \ \text{H}^{^+}_{(aq)} + \mathbf{3.} \ \text{CH}_3 - \text{CH}_2 - \text{OH}_{(aq)} \leftarrow \mathbf{4Cr}^{3+}_{(aq)} + \mathbf{11H}_2O_{(\ell)} + \mathbf{3CH}_3 - \text{CO}_2H_{(aq)}$$

2) L'oxydation de l'éthanol en acide éthanoïque a pour équation :

CH₃-CH₂-OH (aq) + H₂O(
$$\epsilon$$
) \leftarrow CH₃-CO₂H(aq) + 4H⁺(aq) + 4è
Elle met en jeu 4 è

3) a) Les éthylomètres utilisent la loi de Beer-Lambert.

b) Détermination de σ :

$$\sigma_1 = \frac{1}{\lambda_1} = \frac{1}{3,39.10^{-6}} = 2950 \text{ cm}^{-1}$$

$$\sigma_2 = \frac{1}{\lambda_2} = \frac{1}{3.48.10^{-6}} = 2874 \text{ cm}^{-1}$$

Les nombres d'ondes correspondant aux liaisons Ctét-H des groupes méthyle CH3 et méthylène CH2.

c) La plupart des hydrocarbures comportent des liaisons Ctét-H. Leur présence perturbe donc les mesures.

4)a) Calcul de σ

$$\sigma_3 = \frac{1}{\lambda_3} = \frac{1}{9.46.10^{-6}} = 1057 \text{ cm}^{-1}$$

- Correspond à la liaison C-O

b) L'éthanal a pour formule

Sa présence ne fausse donc pas la mesure.

présente des liaisons C-O. Sa présence perturbe donc la mesure.

- 5) L'air expiré contient de la vapeur d'eau H₂O. La bande d'absorption relative au groupe hydroxyle traduirait non seulement la présence du groupe hydroxyle O-H de l'éthanol, mais aussi ceux des molécules d'eau.
- 6) a) La précision de ces trois appareils est une précision relative ; elle est définie par rapport à la valeur réelle d'alcool dans le sang telle que la déterminerait un dosage.
- b) Il serait nécessaire de faire une prise de sang et de doser l'alcool effectivement présent dans le sang.
- c) L'éthylomètre à infrarouge est le plus précis, c'est aussi le plus cher.