Thème 1-CONSTITUTION et TRANSFORMATION de la MATIERE

CHAP 06-la MOLE, unité de quantité de matière

POLY: La MOLE

Contenus	Compétences exigibles
Compter les entités dans un	Déterminer la masse d'une entité à partir de sa formule brute et de la
échantillon de matière.	masse des atomes qui la composent.
Nombre d'entités dans un échantillon.	Déterminer le nombre d'entités et la quantité de matière
Définition de la mole.	(en mol) d'une espèce dans une masse d'échantillon.
Quantité de matière dans un échantillon.	

A/ Masse et nombre d'entités chimiques

1 Masse d'une molécule

La masse d'une molécule est égale à la somme des masses des atomes qui la constituent (doc.1).

En chimie, la masse s'exprime souvent en grammes (g).

Pour calculer la masse d'une molécule, il faut **connaître sa formule** qui indique le nombre et le type d'atomes qui la constituent, ainsi que la masse de chaque atome.

2 Masse d'un composé ionique

Dans le cas d'un ion, la masse des électrons perdus ou gagnés est négligeable par rapport à la masse de l'atome.

Ainsi la masse d'un ion est égale à la masse de l'atome correspondant.

La masse d'un composé ionique est égale à la somme des masses des atomes correspondant aux ions qui le constituent.

3 Nombre d'entités dans un échantillon à partir des masses

Le **nombre N d'entités chimiques** d'un échantillon (**doc. 2**) peut se calculer à partir de la masse de l'échantillon $m_{\text{\'echantillon}}$ et de la masse de l'entité $m_{\text{entit\'e}}$ constituant cet échantillon :

$$N = \frac{m_{\text{\'echantillon}}}{m_{\text{\'entit\'e}}}$$

N est sans unité.

Les deux masses s'expriment donc dans la même unité (g ou kg).

Données:

Doc. 2 Masse (en g)	s de quelques atomes
С	1,99 × 10 ⁻²³
Н	1,66×10 ⁻²⁴
0	2,66 × 10 ⁻²³
Cu	$1,05\times10^{-22}$
Fe	9,27 × 10 ⁻²³
S	5,33 × 10 ⁻²³
Cℓ	5,90 × 10 ⁻²³
Zn	1,09 × 10 ⁻²²
Na	$3,82 \times 10^{-23}$

B/ La mole, unité de quantité de matière

1 Définition de la mole

Une **mole** est un paquet de $6,02214076 \times 10^{23}$ entités identiques, soit environ $6,02 \times 10^{23}$ entités.

Le nombre de « paquets » contenus dans un échantillon se nomme la quantité de matière (doc. 3).

La **quantité de matière** se note *n*.

Elle s'exprime en moles (symbole: mol).

2 Relation entre le nombre d'entités N et la quantité de matière n

Le nombre d'entités N (doc. 4) dans un échantillon et la quantité de matière n sont liés par une **relation de proportionnalité**:

 $N = n \times 6,02 \times 10^{23}$

N correspond au nombre d'entités (sans unité). n est la quantité de matière (mol). 6.02×10^{23} est le nombre d'entités par mole.

C/ Déterminer une quantité de matière

- Lors de la réalisation d'une transformation chimique, les quantités de matière de réactifs sont des informations importantes pour les chimistes.
- Au laboratoire, il n'existe pas d'appareil de mesure qui indique directement une quantité de matière. En revanche, la masse d'un échantillon m_{échantillon} est facilement accessible par pesée ou par calcul.

La quantité de matière n d'un échantillon est liée à la masse de l'échantillon $m_{\text{échantillon}}$ par la relation :

 $n = \frac{m_{\text{\'echantillon}}}{m_{\text{entit\'e}} \times 6,02 \times 10^{23}}$

n est la quantité de matière (mol).

m_{échantillon} correspond à la masse de l'échantillon (g).

m_{entité} est la masse de l'entité (g).

6,02 × 10²³ est le nombre d'entités par mole.

mentité x 6,02 x 1023 représente la masse d'une mole de l'entité.

Dans le cas d'un liquide (doc.5), la masse de l'échantillon sera calculée à partir de son volume $V_{echantillon}$ et de sa masse volumique ρ selon la formule suivante :

méchantillon = p x Véchantillon

m_{échantillon} correspond à la masse de l'échantillon (g).

V_{échantillon} est le volume de l'échantillon (mL).

ρ est sa masse volumique (g·mL⁻¹).